Trench Small Signal MOSFET

20 V, 0.88 A, Dual P-Channel, **ESD Protected SC-88**

Features

- Leading Trench Technology for Low R_{DS(ON)} Performance
- Small Footprint Package (SC70-6 Equivalent)
- ESD Protected Gate
- Pb-Free Package is Available

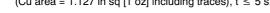
Applications

- Load/Power Management
- Charging Circuits
- Load Switching
- Cell Phones, Computing, Digital Cameras, MP3s and PDAs

MAXIMUM RATINGS	$(T_{J} = 25^{\circ}C)$	C unless other	wise stated	d)		
Parameter			Symbol	Value	Unit	
Drain-to-Source Voltage			V _{DSS}	-20	V	
Gate-to-Source Voltage)		V _{GS}	±12	V	
Continuous Drain	Steady	T _A = 25°C	I _D	-0.88	Α	
Current (Note 1)	State	T _A = 85°C		-0.63	1	
Power Dissipation	Steady	T _A = 25°C	PD	0.272	W	
(Note 1)	State	T _A = 85°C		0.141		
Continuous Drain	t ≤ 5 s	T _A = 25°C	I _D	-1.0	А	
Current (Note 2)		T _A = 85°C		-0.72		
Power Dissipation	$t \le 5 s$	T _A = 25°C	PD	0.35	W	
(Note 2)		T _A = 85°C		0.181		
Pulsed Drain Current	-	t ≤ 10 μs	I _{DM}	±3.0	Α	
Operating Junction and Storage Temperature		T _J , T _{STG}	-55 to °C 150			
Continuous Source Current (Body Diode)		I _S	-0.48	Α		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C		

.

THERMAL RESISTANCE RATINGS (Note 1)

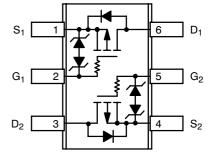

Parameter	Symbol	Max	Unit
Junction-to-Ambient – Steady State		460	°C/W
Junction-to-Ambient – t \leq 5 s	$R_{\theta JA}$	357	
Junction-to-Lead – Steady State	$R_{\theta JL}$	226	

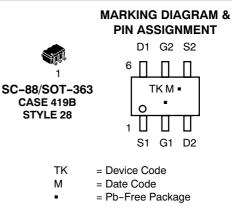
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface mounted on FR4 board using 1 in sq pad size

(Cu area = 1.127 in sq [1 oz] including traces), steady state.

2. Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces), $t \le 5$ s.




ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} Тур	I _D Max
	215 mΩ @ -4.5 V	
-20 V	345 mΩ @ −2.5 V	-0.88 A
	600 mΩ @ -1.8 V	

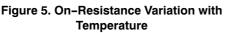
Top View

(Note: Microdot may be in either location)

ORDERING INFORMATION

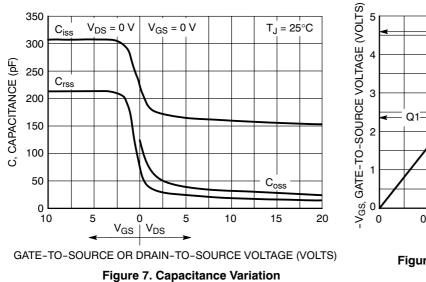
Device	Package	Shipping
NTJD4152PT1	SOT-363	3000 Units/Reel
NTJD4152PT1G	SOT-363 (Pb-Free)	3000 Units/Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


ELECTRICAL CHARACTERISTICS (T_J=25°C unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit	
OFF CHARACTERISTICS								
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = -250 \ \mu\text{A}$		-20			V	
Zero Gate Voltage Drain Current	I _{DSS}		$T_J = 25^{\circ}C$			1.0	μΑ	
		V_{GS} = 0 V, V_{DS} = -16 V	T _J = 125°C		1.0	5.0		
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ±4.5 V			0.03	1.0	μΑ	
		V _{DS} = 0 V, V _{GS} = :	±12 V		6.0		<u> </u>	
ON CHARACTERISTICS (Note 3)								
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, ID = -250 μ A		-0.45			V	
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = -4.5 V, I _D = -0.88 A			215	260	mΩ	
		V _{GS} = -2.5 V, I _D = -	-0.71 A		345	500	1	
	$V_{GS} = -1.8 \text{ V}, \text{ I}_{\text{D}} = -0.$		-0.20 A		600	1000	1	
Forward Transconductance	g fs	V _{DS} = -10 V, I _D = -0.88 A			3.0		S	
CHARGES AND CAPACITANCES								
Input Capacitance	C _{ISS}				155		pF	
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = -20 V			25		1	
Reverse Transfer Capacitance	C _{RSS}				18		1	
Total Gate Charge	Q _{G(TOT)}	V _{GS} = -4.5 V, V _{DS} = -10 V, I _D = -0.88 A			2.2		nC	
Gate-to-Source Charge	Q _{GS}				0.5			
Gate-to-Drain Charge	Q _{GD}				0.65			
SWITCHING CHARACTERISTICS (No	ote 4)							
Turn-On Delay Time	t _{d(ON)}				5.8		ns	
Rise Time	t _r	V_{GS} = -4.5 V, V_{DD} = -10 V, I_{D} = -0.5 A, R_{G} = 20 Ω			6.5		-	
Turn-Off Delay Time	t _{d(OFF)}				13.5			
Fall Time	t _f				3.5		1	
DRAIN-SOURCE DIODE CHARACTE	RISTICS							
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V_{CS}$	T _J = 25°C		-0.8	-1.2	V	
		$V_{GS} = 0 V,$ $I_{S} = -0.48 A$	T _J = 125°C		-0.66			

Pulse Test: pulse width ≤ 300μs, duty cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.


V_{GS} = -4.5, -3.5 & -2.5 V . T_J = 25°C $V_{DS} \ge -20 V$ 0.9 -I_{D,} DRAIN CURRENT (AMPS) -ID, DRAIN CURRENT (AMPS) -2 V -1.75 V 0.8 0.75 0.7 0.6 0.5 0.5 0.4 -1.5 V 0.3 125°C 0.25 0.2 25°C 1.25 V 0.1 -55°C T.i = 0 0 0.4 0.8 1.2 2 0.5 0 1.6 0 1.5 2 2.5 3 3.5 1 -V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS) -V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Figure 1. On-Region Characteristics **Figure 2. Transfer Characteristics** RDS(on), DRAIN-TO-SOURCE RESISTANCE (Q) $R_{DS(on)}$, DRAIN-TO-SOURCE RESISTANCE (Ω) 2.5 0.3 T_ = 25°C V_{GS} = -4.5 V T_J = 125°Ċ 2.0 0.25 V_{GS} = -1.8 V 1.5 0.2 T_J = 25°C 1.0 0.15 $T_J = -55^{\circ}C$ 0.5 V_{GS} = -2.5 V V_{GS} = -4.5 V 0 0.1 0.25 0.5 0.75 0.4 0.5 0.6 0.7 0.8 0.9 0 1 -ID. DRAIN CURRENT (AMPS) -ID. DRAIN CURRENT (AMPS) Figure 4. On-Resistance vs. Drain Current and Figure 3. On-Resistance vs. Drain Current and **Gate Voltage** Temperature 10000 2.0 I_D = -0.88 A $V_{GS} = 0 V$ 1.8 $V_{GS} = -4.5 V$ R_{DS(on)}, DRAIN-TO-SOURCE RESISTANCE (NORMALIZED) -I_{DSS,} LEAKAGE CURRENT (nA) 00 00 1.6 $T_J = 150^{\circ}C$ 1.4 1.2 1.0 T_J = 125°C 0.8 0.6 0.4 0.2 0 10 -25 100 -50 0 25 50 75 125 150 0 5 10 15 20 -V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS) T_J, JUNCTION TEMPERATURE (°C)

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

TYPICAL PERFORMANCE CURVES (T_J = 25° C unless otherwise noted)

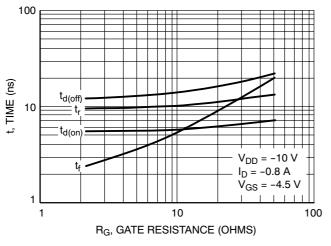


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 8. Gate-to-Source Voltage vs. Total Gate Charge

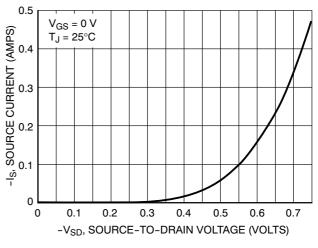
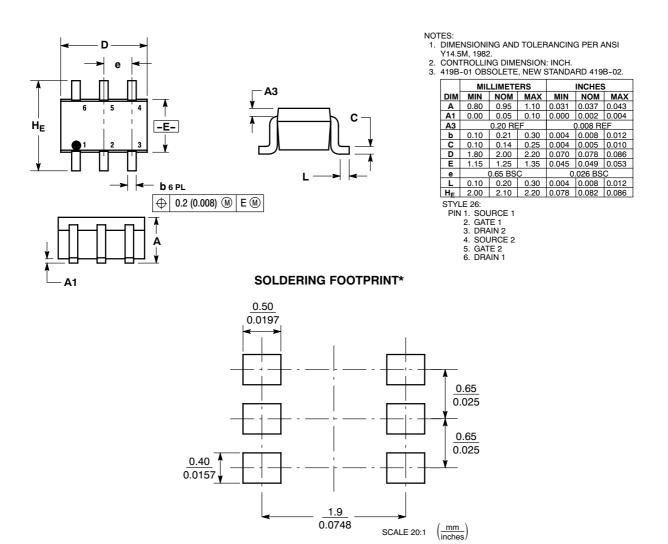



Figure 10. Diode Forward Voltage vs. Current

PACKAGE DIMENSIONS

SC-88/SC70-6/SOT-363 CASE 419B-02 ISSUE W

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use (source) and expenses had is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative